
Geese Lightning

White-Box Testing Evidence
Colour Key: Test Removed for Assessment 3 Test Updated for Assessment 3
Unit testing. All dynamic, functional tests.

Test Class Test Name Test ID Description Result

CharacterTest charactersWithSamePositionSho
uldCollide

1.1.1 Creates one character and checks it collides with itself. PASS

touchingCharactersShouldCollid
e

1.1.2 Creates two characters than are just touching to ensure they
collide. This is the most likely situation to occur in game.

PASS

nonTouchingCharactersShouldN
otCollide

1.1.3 Creates two characters that should not collide and checks this is
the case.

PASS

getCenterOnCharacterWithPositi
vePosition

1.2.1 Tests the calculation for getCenter(), on a character in the top
right quadrant. It assumes the character sprite is 32x32, as it
should be.

PASS

getCenterOnCharacterWithNegat
ivePosition

1.2.2 Negative test as no character should ever have a negative position
in the x or y direction. Again testing the calculation for
getCenter().

PASS

getDirectionInTopLeftQuadrant 1.3.1 Testing the getDirection method for each possible quadrant. All of
which are possible as the direction is a bearing relative to the
characters center.

PASS

getDirectionInBottomLeftQuadra
nt

1.3.2 PASS

getDirectionInBottomRightQuad
rant

1.3.3 PASS

getDirectionInTopRightQuadrant 1.3.4 PASS

Geese Lightning

charactersTakeSpecifiedDamage 1.4 Calling takeDamage() on a character and testing if the expected
hit points are lost from the player.

PASS

getDirNormVectorToNegativePo
sition

1.5.1 Testing that getDirNormVector calculates the correct normalized
vector from the characters center to a positive coordinate.

PASS

getDirNormVectorToPositivePos
ition

1.5.2 Testing that getDirNormVector calculates the correct normalized
vector from the characters center to a negative coordinate.

PASS

PlayerTest playerPositionResetsWhenRespa
wned

2.1 Check that the original position of the player is the same as the
position after moving it, then respawning it.

PASS

playerDoesDamageToZombieW
henAtMaxRange

2.2.1 Creates a player and a zombie where the zombie is the maximum
range away from the player in the direction that the player is
facing. Then the player attacks the zombie and we check that the
health decreases.

PASS

playerDoesDamageToZombieW
henInRange

2.2.2 The same as above but the zombie’s distance from the player is
less than the maximum range.

PASS

playerDoesNoDamageToZombie
WhenOutOfRange

2.2.3 The same as above but the zombie’s distance from the player is
greater than the maximum range. In this case the player should
not do damage to the player.

PASS

playerTypesHaveDifferentHealth 2.3.1 Save the health of a nerdy student in a variable then respawn the
player as a sporty student and check that they have a different
amount of hit points. Then save the health of a sporty student in a
variable and respawn the player as a stJohn student and check that
it has a different health from both of the others.

PASS

playerTypesHaveDifferentSpeed 2.3.2 Save the speed of a nerdy student in a variable then respawn the
player as a sport student and check that they have different speed.
Then save the speed of a sporty student in a variable and respawn

PASS

Geese Lightning

the player as a stJohn student and check that it has a different
speed from both of the others.

ZombieTest zombieDoesDamageToPlayerWh
enAtMaxRange

3.1.1 The same as 2.1.1 but switch player and zombie positions and
checking that the zombie does damage to the player.

PASS

zombieDoesDamageToPlayerWh
enInRange

3.1.2 The same as 2.1.2 but switch player and zombie positions and
checking that the zombie does damage to the player.

PASS

zombieDoesNoDamageToPlaye
WhenOutOfRange

3.1.3 The same as 2.1.3 but switch player and zombie positions and
checking that the zombie does no damage to the player.

PASS

zombieCannotAttackBeforeCool
downComplete

3.2.1 The zombie tries to attack the player twice in rapid succession.
The player should only take damage from the first attack.

PASS

zombieCanAttackAfterCooldow
nComplete

3.2.2 The zombie tries to attack the player twice but with a pause longer
than the zombies cooldown time between the attacks. The player
should take damage from both attacks.

PASS

zombieTypesHaveDifferentHealt
h

3.3.1 The health of each type of zombie is checked against the health of
every other kind of zombie to ensure that none of them are equal.
The health values are created from the constants
ZOMBIEBASEHEALTH, ZOMBIESTATMODIFIER,
FIRSTBOSSSTATMODIFIER and
FINALBOSSHEALTHMODIFIER.

PASS

zombieTypesHaveDifferentSpee
d

3.3.2 The speed of each type of zombie is checked against the speed of
every other kind of zombie to ensure that none of them are equal.
The health values are created from the constants
ZOMBIEBASESPEED, ZOMBIESTATMODIFIER,
FIRSTBOSSSTATMODIFIER and
FINALBOSSSPEEDMODIFIER.

PASS

Geese Lightning

PowerUpTest powerUpHealthAddsHPToPlaye
r

4.1 Reduces players health then activates a health power up and
checks that the players health goes up by the amount specified by
Constant.HEALUP.

PASS

powerUpSpeedIncreasesPlayersS
peed

4.2.1 Compares the players speed before and after activating a speed
power up to make to sure the speed increases by the amount
specified by Constant.SPEEDUP.

PASS

powerUpSpeedDeactivatesAfter1
0s

4.2.2 Compares the players speed before activating it and 11 seconds
after it has been activated to make sure the speed is the same as
the original speed.

PASS

powerUpSpeedDoesNotDeactiva
teBefore 10s

4.2.3 Compares the player speed before activating and 9s after
activating to make sure the speed is still different.

PASS

powerUpSpeedDeactivateMetho
dResestsPlayerSpeed

4.2.4 Tests that the speed power ups effect can be cancelled at anytime
by calling deactivate0 manually.

PASS

playerCannotPickUpFarAwayPo
werUp

4.3.1 Checks the player can’t pick up a power up that is out of reach
(must be overlapping) by using the overlapsPlayer() method of
the PowerUp class.

PASS

playerCanPickUpClosePowerUp 4.3.2 Checks the player can pick up a power up that is in reach (must be
overlapping) by using the overlapsPlayer() method of the
PowerUp class.

PASS

powerUpImmunityStopsThePlay
erTakingDamage

4.4.1 Activates an immunity power up and calls takeDamage on the
player. Checks that the players health before and after
takeDamage remains the same.

PASS

powerUpImmunityDeactivatesAf
ter5s

4.4.2 Activates an immunity power up and calls takeDamage before
and after 5 seconds. Checks the the player only lost hit points
from takeDamage called after 5 seconds.

PASS

Geese Lightning

powerUpImmunityDeactivateMe
thodCancelsImmunity

4.4.3 Activates an immunity power up and calls takeDamage on the
player before and after calling deactivate on the power up. Checks
the player only lost hit points from the takeDamage called after
deactivate.

PASS

powerUpSlowDecreasesPlayersS
peed

4.5.1 Compares the players speed before and after activating a slow
power up to make to sure the speed decreases by the amount
specified by Constant.SLOW.

PASS

powerUpSlowDeactivatesAfter1
5s

4.5.2 Compares the players speed before activating it and 16 seconds
after it has been activated to make sure the speed is the same as
the original speed.

PASS

powerUpSlowDoesNotDeactivat
eBefore15s

4.5.3 Compares the player speed before activating and 14s after
activating to make sure the speed is still different.

PASS

powerUpSlowDeactivateMethod
ResetsPlayerSpeed

4.5.4 Tests that the slow power ups effect can be cancelled at anytime
by calling deactivate() manually.

PASS

powerUpDamageIncreasesPlayer
sAttackDamage

4.6.1 Compares the players speed before and after activating a damage
power up to make to sure the attackDamage increases by the
amount specified by Constant.DAMAGEUP.

PASS

powerUpDamageDeactivatesAft
er5s

4.6.2 Compares the players attackDamage before activating it and 6
seconds after it has been activated to make sure the attackDamage
is the same as the original attackDamage.

PASS

powerUpDamageDoesNotDeacti
vateBefore5s

4.6.3 Compares the player attackDamage before activating and 4s after
activating to make sure the attackDamage is still different.

PASS

powerUpDamageDeactivateMeth
odResetsPlayerattackDamage

4.6.4 Tests that the damage power ups effect can be cancelled at
anytime by calling deactivate() manually.

PASS

